The First Total Synthesis of 3-Oxo-11, 12, 13-trihydroxyeudesm-4-ene

Yu Kun GUAN ${ }^{1}$, Ping LI^{2}, Li Jing FANG ${ }^{1}$, Yu Lin $\mathrm{LI}^{1}{ }^{*}$
${ }^{1}$ State Key Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000
${ }^{2}$ Chemical Engineering \& Pharmaceutics College, Henan University of Science and Technology, Luoyang 471003

Abstract

The first total synthesis of 3-oxo-11, 12, 13-trihydroxyeudesm-4-ene, a highly oxygenated natural eudesmane, was described.

Keywords: Total synthesis, 3-oxo-11, 12, 13-trihydroxyeudesm-4-ene, eudesmane, sesquiterpene.

Sesquiterpenic compounds of Eudesmane family, especially highly oxygenated eudesm-ane, have attracted considerable attention due to their intriguing biological properties ${ }^{1,2}$, particularly significant antifeedant activity, cell growth inhibitory and plant growth regulating activities.

3-Oxo-11, 12, 13-trihydroxyeudesm-4-ene 1, a highly oxygenated eudesmane, was firstly isolated from Achillea holosericea by Ahmed et al. in 2002^{3}. Members of the genus Achillea are widely used in folk medicine for the preparation of herbal teas with antiphlogostic and spasmolytic activity ${ }^{4}$; extracts exhibit pharmacological activities including antibacterial ${ }^{5}$, anti-inflammatory ${ }^{6}$ and antiallergic ${ }^{7}$ properties. To the best of our knowledge, the total synthesis of $\mathbf{1}$ has not been reported yet. Herein, we reported a facile total synthesis of $\mathbf{1}$ starting from (+)-dihydrocarvone 2.

Reagents and conditions: a. Ref 8, 62%; b. Vilsmeier reagent, $30 \% \mathrm{H}_{2} \mathrm{O}_{2},-20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$; c. 1) NaI , acetone, r. t., 4 h ; 2) $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{DMSO}, \mathrm{H}_{2} \mathrm{O}, 50-60^{\circ} \mathrm{C}, 6 \mathrm{~h}, 68 \%$; d. $\mathrm{K}_{2} \mathrm{OsO}_{4}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, t-\mathrm{BuOH}$, $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 24 \mathrm{~h}, 78 \%$.

[^0](+)-Cyperone 3 (purity > 95\%, determined by GC) was stereoselectively prepared from (+)-dihydrocarvone 2 in two steps ${ }^{8}$. Selective allylic chlorination of 3 with Vilsmeier reagent ${ }^{9}$ afforded 4 in 74% yield. Iodination of 4 with NaI followed by treatment with $\mathrm{Cu}_{2} \mathrm{O}$ in DMSO- $\mathrm{H}_{2} \mathrm{O}$ (1:2) gave alcohol 5 in 68% overall yield. Dihydroxylation of 5 with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and a catalytic amount of $\mathrm{K}_{2} \mathrm{OsO}_{4}$ afforded 3-oxo-11, 12, 13-trihydroxyeudesm-4-ene $\mathbf{1}$ in 78% yield. The spectral data of synthetic product $\mathbf{1}^{10}$ is fully consisted with literatural ${ }^{3}$ data of natural product.

Acknowledgments

We are grateful for the financial supports from the National Natural Science Foundation of China (Grant No. 20272021).

References and Notes

1. T. A. Van Beek, A. De Groot, Recl. Trav. Chim. Pays-Bas, 1986, 105(12), 513.
. M. Ando, K. Isogai, H. Azami, N. Hirata, Y. Yanagi, J. Nat. Prod., 1991, 54(4), 1017.
2. A. A. Ahmed, A. A. Mahmoud, E. T. Ali, et al., Phytochemistry, 2002, 59(8), 851.
3. M. Wichtl, Herbal Drugs and Phytopharmaceuticals, Scientific Publishers, Stuttgart, 1994.
4. S. S. Mishurova, R. M. Abbasov, T. A. Malinovskaya, F. M. Mamedalieva, Rastit. Resur., 1985, 21(1), 69.
5. A. S. Goldberg, E. C. Mueller, E. Eigen, S. De Salve, J. Pharm. Sci., 1969, 58(8), 938.
6. A. Orkiszewska, R. Lobarzewsky, M. Jedrizejewska, Polish Patent, 1985, B1 119889.
7. Z. M. Xiong, J. Yang, Y. L. Li, Tetrahedron Asymmetry, 1996, 7(9), 2607.
8. J. Rodriguez, J. P. Dulcere, Synlett, 1991, (7), 477.
9. Data of compound 1: colorless oil. $[\alpha]_{\mathrm{D}}^{25}+21.7$ (c $\left.1.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta_{p p m}$): $3.78-3.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 3.56$ (br s, $3 \mathrm{H},-\mathrm{OH}$), $2.79(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{\mathrm{eq}}-6\right), 2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-2\right), 2.36\left(\mathrm{dt}, 1 \mathrm{H}, J=17.0,4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{eq}}-2\right), 1.97(\mathrm{t}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}$, $\mathrm{H}_{\mathrm{ax}}-6$), 1.73 (s, $3 \mathrm{H}, \mathrm{CH}_{3}-15$), 1.74-1.70 (m, 3H, H-1, $\mathrm{H}_{\mathrm{eq}}-9$), 1.65-1.53 (m, 3H, H-7, H-8), $1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{ax}}-9\right), 1.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-14\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $200.0(\mathrm{C}-3)$, 163.2 (C-5), 129.1 (C-4), $75.0(\mathrm{C}-11), 65.8$ (C-13), 65.3 (C-12), $43.2(\mathrm{C}-7), 42.1(\mathrm{C}-9), 37.4$ (C-1), 36.2 (C-10), 33.9 (C-2), 28.2 (C-6), 22.6 (C-14), 22.1 (C-8), 11.2 (C-15). IR $\left(\mathrm{KBr} / \mathrm{cm}^{-1}\right): 3409,1647,1605,1450,1374,1244,755 . \operatorname{MS}(\mathrm{EI}, \mathrm{m} / \mathrm{z}): 268\left(\mathrm{M}^{+}, 0.3\right), 250$ (10), 237 (30), 219 (11), 202 (24), 177 (100), 161 (33), 149 (61), 91 (67), 55 (54), 43 (47).

Received 27 May, 2004

[^0]: * E-mail: liyl@lzu.edu.cn

